Search results

225 resources and 3 collections matched your query.

Search

Library of 3383 accessible STEM media resources.

  • Subject:
  • Type:
  • Accommodation:
  • Source:

Results

Resources

225

Showing resources 221 to 225 of 225

Select a resource below to get more information and link to download this resource.

  • Spherical object and a wavy line passing through something in the center. Caption: light particles that shoot off in opposite directions

    The rate of a chemical reaction is affected by a number of factors, including temperature and the concentration of reactants at the beginning of the reaction. While the chemical equation may show reactants turning into products as a straightforward process, it is actually involved and precise. How exactly do reactants turn into products? Sometimes, the answer is as simple as two atoms bumping into each other and forming a bond. Most of the time, however, the process is much more complex. Controlling the rate of reactions has implications for a variety of applications, including drug design and corrosion prevention. Part of the series Chemistry: Challenges And Solutions.

    (Source: DCMP)

  • Two young girls looking at plants. Caption: teaching students hydroponic farming

    These city kids from Boston may not look like conventional farmers, but they’re spending part of their summer getting their hands dirty. They’re learning how to build solar-powered hydroponic systems that grow organic vegetables without soil. With support from the National Science Foundation, Boston College educator Mike Barnett and his team developed the Urban Hydrofarmers Project to engage students in math and science through hydroponic farming and green energy technology. And, because the teens sell what they grow at farmers’ markets, the students get to experience green entrepreneurship. Barnett and his team have also partnered with the STEM Garden Institute to bring hydroponic farming into classrooms throughout the U.S. Part of the National Science Foundation Series “Science Nation.”

    (Source: DCMP)

  • Oil drilling platforms in the ocean with many ships in the water around them. Caption: but they can make money because of our energy policy.

    Everywhere one looks in Southern Louisiana there's water: rivers, bayous, swamps, the Mississippi River, and the Gulf of Mexico. And everyone in Cajun Country has a water story, or two or three or more. Its waterways support the biggest economies in Louisiana - a $70 billion a year oil and gas industry, a $2.4 billion a year fishing business, tourism and recreational sports. But these waterways are also home to some insidious polluters along a 100-mile-long stretch of the Mississippi known "Cancer Alley," the world's largest Dead Zone in the Gulf of Mexico and erosion that is costing the coastline twenty five square miles of wetlands a year.

    (Source: DCMP)

  • Illustration of a measurement device attached to leads which surround a central core that is emitting a moving magnetic field. Caption: As long as the magnetic field moves

    Part of the "A 3-D Demonstration" series. Looks at physics principles behind AC and DC generators. Examines the relationship between a changing magnetic field and the induction of electric current. A hand rule is introduced to predict the generator effect in a linear length of conductor exposed to a changing magnetic field. The behavior of a rotating coil in a magnetic field leads to the practical construction of an AC motor. Introduces split-ring commutator generators, as well as the more common alternator as a means of generating DC electricity. Specific modules include Generating Electricity, Inductors, Generator Left-Hand Rule, Generator Electromotive Rule, AC Generators, and DC Generators. Correlates to all National CTE Organizational Standards (including the provisions of the Perkins Act).

    (Source: DCMP)

  • Bohr Diagrams

    • Image
    • 2.5D Tactile Graphic
    • PDF
    • Text Document
    Bohr diagrams of elements from groups 1, 14, 17 and 18, and periods 1, 2 and 3 are shown. Period 1, in which the 1n shell is filling, contains hydrogen and helium. Hydrogen, in group 1, has one valence electron. Helium, in group 18, has two valence electrons. The 1n shell holds a maximum of two electrons, so the shell is full and the electron configuration is stable. Period 2, in which the 2n shell is filling, contains lithium, carbon, fluorine, and neon. Lithium, in group 1, has 1 valence electron. Carbon, in group 14, has 4 valence electrons. Fluorine, in group 17, has 7 valence electrons. Neon, in group 18, has 8 valence electrons, a full octet. Period 3, in which the 3n shell is filling, contains sodium, silicon, chlorine, and argon. Sodium, in group 1, has 1 valence electron. Silicon, in group 14, has 4 valence electrons. Chlorine, in group 17, has 7 valence electrons. Argon, in group 18, has 8 valence electrons, a full octet.

    Figure 2.7 (OpenStax, Biology 2e) caption: Bohr diagrams indicate how many electrons fill each principal shell. Group 18 elements (helium, neon, and argon) have a full outer, or valence, shell. A full valence shell is the most stable electron configuration. Elements in other groups have partially filled valence shells and gain or lose electrons to achieve a stable electron configuration.

    (Source: OpenStax)

Collections

3

Showing collections 1 to 3 of 3

  • Chemistry

    • Video
    • Image
    • 2.5D Tactile Graphic
    • PDF
    • Text Document
    • Simulation

    A collection of Chemistry related resources

    A collection containing 67 resources, curated by Benetech

  • Biology

    • Video
    • Image
    • Text Document
    • PDF
    • 2.5D Tactile Graphic
    • 3D Model
    • Audio File

    Biology related concepts

    A collection containing 59 resources, curated by Benetech

  • Animals

    • Video

    Resources to teach younger students about animals

    A collection containing 58 resources, curated by DIAGRAM Center