12 resources and 2 collections matched your query.
Library of 3383 accessible STEM media resources.
Showing resources 1 to 12 of 12
Select a resource below to get more information and link to download this resource.
Acids and bases are important to many chemical processes: maintaining a stable internal environment in the human body, baking a delicious cake, or determining whether a lake can support aquatic life. Reactions involving acids and bases can be described through the transfer of protons. The reactions of acids and bases, which can be monitored with indicators, can range from corrosive behavior to neutralizations that leave no acids or bases behind. To understand the controlling of pH of solutions, buffers are discussed in the laboratory and in the chemistry of the bloodstream. Part of Chemistry: Challenges and Solutions Series.
(Source: DCMP)
Figure 2.2 (OpenStax, Biology 2e) caption: Elements, such as helium, depicted here, are made up of atoms. Atoms are made up of protons and neutrons located within the nucleus, with electrons in orbitals surrounding the nucleus.
(Source: OpenStax)
What is an atom? It is the smallest particle of an element, and everything is made up of atoms. They consist of three basic particles: protons, electrons, and neutrons. The scientific community has experienced significant breakthroughs which have contributed to the understanding of atoms. Other topics covered include atomic number, atomic mass, Bohr model, electron cloud, and isotope.
Diagram of a hydrogen atom. Design modalities for the image include braille with and without labels, print with and without labels in greyscale, color, and texture.
(Source: Benetech)
Diagram of a helium atom. Design modalities for the image include braille with and without labels, print with and without labels in greyscale, color, and texture.
Diagram of a lithium atom. Design modalities for the image include braille with and without labels, print with and without labels in greyscale, color, and texture.
Grab a balloon to explore concepts of static electricity such as charge transfer, attraction, repulsion, and induced charge.
(Source: PhET Interactive Simulations)
Students learn the fundamental concepts of electrical energy. Easy-to-understand animations illustrate the concepts of electric charge and electric current. Static electricity and the role it plays in creating lightning is also described. Important terminology includes protons, electrons, repel, attract, charges, charged objects, electrical discharge, electric field, and electric force.
Remixed from Customizable Atom Delux by roman_hegglin. Helium is a chemical element with symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas, the first in the noble gas group in the periodic table. Its boiling point is the lowest among all the elements.
Figure 2.6 (OpenStax, Biology 2e) caption: In 1913, Niels Bohrs developed the Bohr model in which electrons exist within principal shells. An electron normally exists in the lowest energy shell available, which is the one closest to the nucleus. Energy from a photon of light can bump it up to a higher energy shell, but this situation is unstable, and the electron quickly decays back to the ground state. In the process, it releases a photon of light.
In nuclear physics, nuclear fusion is a nuclear reaction in which two or more atomic nuclei come close enough to form one or more different atomic nuclei and subatomic particles (neutrons and/or protons). The difference in mass between the products and reactants is manifested as the release of large amounts of energy. This difference in mass arises due to the difference in atomic "binding energy" between the atomic nuclei before and after the reaction. Fusion is the process that powers active or "main sequence" stars, or other high magnitude stars.
(Source: APH)
Gravity rules the life cycle of stars. During the Red Giant dying stage in the life of an average size star, its outer layers are blown off in vast clouds of dust and gas called "nebulae" that contain hydrogen, oxygen, and nitrogen. Gravity crushes the remaining atoms into a remnant core called a white dwarf. The gravity of giant stars-10 to 20 times larger than average-will, at the end of their life in a supernova explosion, crush together even mutually repulsive protons and electrons, leaving a remnant rotating core of neutrons (i.e., a pulsar). Also explains how stars 20 to 100 times average size collapse into a core so dense that its gravity doesn't even allow light to escape (i.e., a black hole).
Showing collections 1 to 2 of 2
A collection of Chemistry related resources
A collection containing 67 resources, curated by Benetech
A collection of simulations from PhET.
A collection containing 15 resources, curated by Charles LaPierre