Search results

27 resources and 3 collections matched your query.

Search

Library of 3383 accessible STEM media resources.

  • Subject:
  • Type:
  • Accommodation:
  • Source:

Results

Resources

27

Showing resources 1 to 20 of 27

Select a resource below to get more information and link to download this resource.

  • Atoms

    • Video
    Points of light streaking toward a central point. Caption: Matter is made up of tiny particles called atoms.

    What is an atom? It is the smallest particle of an element, and everything is made up of atoms. They consist of three basic particles: protons, electrons, and neutrons. The scientific community has experienced significant breakthroughs which have contributed to the understanding of atoms. Other topics covered include atomic number, atomic mass, Bohr model, electron cloud, and isotope.

    (Source: DCMP)

  • Oxygen Atoms

    • Image
    • 2.5D Tactile Graphic
    • PDF
    • Text Document
    Two oxygen atoms are shown side-by-side. Each has six valence electrons, two that are paired and two that are unpaired. An arrow indicates that a reaction takes place. After the reaction, the four unpaired electrons join to form a double bond. This double bond can also be depicted by an equal sign between two Os.

    Figure 2.10 (OpenStax, Biology 2e) caption: A double bond joins the oxygen atoms in an O2 molecule.

    (Source: OpenStax)

  • Illustration of an atom showing the nucleus and orbiting electrons. Caption: has a maximum number of electrons it can hold.

    It's called a theory, but if we have never seen an atom, how did anyone ever come up with an idea that is so central to science. Shows how all the pieces of the puzzle have come together at the same time, explaining the structure of the atom and the periodic table.

    (Source: DCMP)

  • Plastic tube containing clear, pebble-like objects is attached to a larger tube. Caption: The gas is filling up a constant volume.

    Chemistry is the science of interacting particles and the various states of matter. Developing a better understanding of the atomic model through experiments with gases, scientists discovered the Ideal Gas Law, developed phase diagrams, and learned about the properties of supercritical fluids. Today's chemists are exploring new ways to control the interactions of atoms, with the goal of making better hydrogen-powered cars and new technologies for the long-term, underground storage of carbon dioxide to reduce greenhouse warming. Part of the series Chemistry: Challenges And Solutions.

    (Source: DCMP)

  • The periodic table of elements. A color-coded grid with letters representing each element. Caption: Each row of the table represents a pattern of chemical properties

    As scientists discovered more and more chemical elements, they began developing systems to organize the elements by their chemical properties, leading to the modern periodic table. Through its organization, the periodic table makes clear the underlying chemical and physical trends among the elements. The periodic table is being continually updated even today as scientists strive to create new elements in laboratories. Part of the series Chemistry: Challenges And Solutions.

    (Source: DCMP)

  • Hollow glass tube with roughly diamond shaped object in the center surrounded by glowing light. Caption: you get the characteristic color of this purplish-blue.

    Using light as a probe, scientists found innovative ways to make inferences about the inner structure of the atom. In this unit, scientists discuss the change from believing the atom was a single indivisible particle to later understanding the atom is composed of subatomic parts. This new picture of matter lead to the development of the quantum model of the atom, as well as ways to identify traces of chemical elements, whether on earth, in the sun, or in a distant galaxy. Part of the series Chemistry: Challenges And Solutions.

    (Source: DCMP)

  • Geometric illustration of atoms. Caption: So here we've drawn in all the atoms.

    Molecules form when individual atoms create bonds by sharing electrons. Understanding how atoms combine to make molecules allows scientists to predict many of the physical and chemical properties of substances. Since the outermost eight electrons are key to forming compounds, this unit shows how the Octet Rule provides a basis for predicting how atoms may gain, lose, or share electrons to fill the slots in their outer shells. A fundamental understanding of how electrons form bonds leads to the three-dimensional shapes of molecules and has implications in all aspects of chemistry. Part of the series Chemistry: Challenges And Solutions.

    (Source: DCMP)

  • Two black cats look straight. Caption: Hey, Smart Puppy, how small are atoms?

    Smart Puppy and his friends use peanuts to understand the size of atoms. Part of the “Smart Puppy! and Friends” series.

    (Source: DCMP)

  • Carbon atom with two oxygen atoms. Caption: Carbon dioxide is an example of a compound.

    Students learn how to differentiate mixtures, solutions, elements, and compounds. Additional concepts and terminology discussed include: element, pure substance, properties, atoms, molecule, compounds, types of mixtures, suspension, colloid, and alloy.

    (Source: DCMP)

  • One central atom with two smaller atoms each attached to an electron on the outer ring of the central atom. Caption: covalently bonded to one oxygen atom,

    Biology is the study of life. It encompasses the cellular basis of living things, the energy that underlies the activities of life, and the genetic basis for inheritance in organisms. Topics covered include the smallest components of living things: atoms, molecules, organelles, and cells. Part of the "Biology" series.

    (Source: DCMP)

  • Atom Diagram

    • Image
    • 2.5D Tactile Graphic
    • PDF
    • Text Document
    This illustration shows that, like planets orbiting the sun, electrons orbit the nucleus of an atom. The nucleus contains two neutrally charged neutrons, and two positively charged protons represented by spheres. A single, circular orbital surrounding the nucleus contains two negatively charged electrons on opposite sides.

    Figure 2.2 (OpenStax, Biology 2e) caption: Elements, such as helium, depicted here, are made up of atoms. Atoms are made up of protons and neutrons located within the nucleus, with electrons in orbitals surrounding the nucleus.

    (Source: OpenStax)

  • Bonding

    • Video
    Blue and red spheres form a larger spherical shape. Caption: affects how they bond with other atoms.

    Part of the "Chemistry in Action" series. Describes and illustrates the process of chemical bonding through live action footage and animations. Provides an overview of the role atomic structure plays in the process of bonding. Provides examples of how chemical bonding, including ionic bonds, covalent bonds, and metallic bonds, affects the characteristics of matter. Introduces the following terminology: element, atomic structure, energy level, valence electrons, ionic bonds, crystal lattice, covalent bond, and metallic bond.

    (Source: DCMP)

  • Water Molecule

    • Image
    • 2.5D Tactile Graphic
    • PDF
    • Text Document
    In the first image, an oxygen atom is shown with six valence electrons. Four of these valence electrons form pairs at the top and right sides of the valence shell. The other two electrons are alone on the bottom and left sides. A hydrogen atom sits next to each the lone electron of the oxygen. Each hydrogen has only one valence electron. An arrow indicates that a reaction takes place. After the reaction, in the second image, each unpaired electron in the oxygen joins an electron from one of the hydrogen atoms so that the valence rings are now connected together. The bond that forms between oxygen and hydrogen can also be represented by a dash.

    Figure 2.9 (OpenStax, Biology 2e) caption: Two or more atoms may bond with each other to form a molecule. When two hydrogens and an oxygen share electrons via covalent bonds it forms a water molecule.

    (Source: OpenStax)

  • Close up views of atoms. Spanish captions.

    Part of a series that features a wide variety of video footage, photographs, diagrams and colorful, animated graphics and labels. Begins with a simple definition of the term and concludes with a critical thinking question. For this particular video, students will focus on the term translational motion. Part of the Science Video Vocab Series.

    (Source: DCMP)

  • Linked hexagonal structures drawn on graph paper. Caption: Graphene is a single layer of carbon atoms

    Graphene could make it possible for electricity to move effortlessly through computer chips, thereby allowing computer systems to run faster than ever before. Savings in both heat and energy costs could have graphene replacing silicon as the basis of computer chip construction. Part of the Fast Draw Series.

    (Source: DCMP)

  • Chlorine and hydrogen atoms joined. Caption: What are some of the different types of chemical compounds?

    Part of the "Chemistry in Action" series. Demonstrates how chemical compounds are placed into groups so that they may be studied easier. Explores acids and bases, emphasizing their nature and common everyday uses. Discusses carbon compounds, and introduces the following terminology: acid, base, pH, salt, carbon, organic, and hydrocarbon.

    (Source: DCMP)

  • Complex matrix of spherical objects and a thermometer showing 0 degrees. Caption: and it changes from the liquid to a solid.

    Introduces the concept that everything is made of matter, and examines the three states of matter. Defines and examines a range of solids, liquids, and gases. Uses graphics to show the effects of heat on atoms and molecules in solids. Summarizes each segment.

    (Source: DCMP)

  • Split image showing cartoon characters with shields; breaking an object with a hammer; next to an apple core; in a container of yogurt; and fixing nitrogen atoms to the roots of a plant.

    Petunia and Pinky introduce viewers to bacteria in this episode. They discuss bacterial structure, reproduction, and how not all bacteria are bad. Other topics covered include endospores, plasmids, and bacteria transformation. Part of "The Amoeba Sisters" series.

    (Source: DCMP)

  • Diagram of an atom with two shells displayed on a screen. Inner shell with two electrons is highlighted. Caption: because they aren't in the outermost shell.

    The formation of molecular bonds is an essential part of keeping matter together. The sharing of charges between atoms helps them become more stable. Other topics covered include sharing electrons, bonding tendencies, isomers, VSEPR theory, and molecular geometry. Part of the "Chemistry" series.

    (Source: DCMP)

  • Friction

    • Simulation
    Screenshot: Phet Simulation - Friction.  Chemistry and Physics textbooks with a blowup of where these books touch eachother and how the atoms interact with eachother as you move the books side to side.

    Grab the Chemistry to play and explore concepts related to friction. Note when using the VoiceOver screen reader with this simulation it is easy to activate VoiceOver's Quick Nav mode while moving the Chemistry book. For the best experience, however, we recommend keeping Quick Nav off.

    (Source: PhET Interactive Simulations)

Collections

3

Showing collections 1 to 3 of 3

  • Chemistry

    • Video
    • Image
    • 2.5D Tactile Graphic
    • PDF
    • Text Document
    • Simulation

    A collection of Chemistry related resources

    A collection containing 67 resources, curated by Benetech

  • Biology

    • Video
    • Image
    • Text Document
    • PDF
    • 2.5D Tactile Graphic
    • 3D Model
    • Audio File

    Biology related concepts

    A collection containing 59 resources, curated by Benetech

  • PhET Simulations

    • Simulation

    A collection of simulations from PhET.

    A collection containing 15 resources, curated by Charles LaPierre